Stationary and Integrated Autoregressive Neural Network Processes

نویسندگان

  • Adrian Trapletti
  • Friedrich Leisch
  • Kurt Hornik
چکیده

We consider autoregressive neural network (AR-NN) processes driven by additive noise and demonstrate that the characteristic roots of the shortcuts-the standard conditions from linear time-series analysis-determine the stochastic behavior of the overall AR-NN process. If all the characteristic roots are outside the unit circle, then the process is ergodic and stationary. If at least one characteristic root lies inside the unit circle, then the process is transient. AR-NN processes with characteristic roots lying on the unit circle exhibit either ergodic, random walk, or transient behavior. We also analyze the class of integrated AR-NN (ARI-NN) processes and show that a standardized ARI-NN process "converges" to a Wiener process. Finally, least-squares estimation (training) of the stationary models and testing for nonstationarity is discussed. The estimators are shown to be consistent, and expressions on the limiting distributions are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Integrated Neural Network Structure for Recognizing Autocorrelated and Trending Processes

Data sets collected from industrial processes may have both a particular type of trend and correlation among adjacent observations (autocorrelation). In the present paper, an integrated neural network structure is used to recognize trend stationary first order autoregressive (trend AR(1)) process. The proposed integrated structure operates as follows. (i) First a combined neural network structu...

متن کامل

Stationarity and Stability of Autoregressive Neural Network Processes

We analyze the asymptotic behavior of autoregressive neural network (AR-NN) processes using techniques from Markov chains and non-linear time series analysis. It is shown that standard AR-NNs without shortcut connections are asymptotically stationary. If linear shortcut connections are allowed, only the shortcut weights determine whether the overall system is stationary, hence standard conditio...

متن کامل

On the Ergodicity and Stationarity of the ARMA(1,1) Recurrent Neural Network Process

In this note we consider the autoregressive moving average recurrent neural network ARMA-NN(1; 1) process. We show that in contrast to the pure autoregressive process simple ARMA-NN processes exist which are not irreducible. We prove that the controllability of the linear part of the process is sufficient for irreducibility. For the irreducible process essentially the shortcut weight correspond...

متن کامل

Forecasting Gold Price Changes: Application of an Equipped Artificial Neural Network

The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...

متن کامل

Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 2000